导航:首页 > 机械设备 > 机器设备故障率正常范围

机器设备故障率正常范围

发布时间:2021-06-12 08:44:18

1. 设备完好率如何计算

1、计算公式为设备完好率=完好设备总台数/生产设备总台数× 100%。

2、定义:设备完好率指完好的生产设备在全部生产设备中的比重,是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。

3、设备完好的一般标准是:设备性能良好,如机械加工设备的精度达到工艺要求;设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准;原料、燃料、油料等消耗正常,无油、水、汽、电的泄漏现象。

4、举例计算:

已知设备总台数176 不良台数19 设备完好率计算

设备完好率=(176-19)/176*100%=89.2045%。

(1)机器设备故障率正常范围扩展阅读:

设备管理的六个评价指标:

1、设备完好率。

2、设备利用率:

定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比,是指设备的使用效率,反映了设备工作状态及生产效率的技术经济指标。

计算公式一:设备利用率=每小时实际产量/每小时理论产量*100%

计算公式二:设备利用率=(每班次(天)实际开机时数 )/每班次(天)应开机时数*100%

计算公式三:设备利用率=某抽样时刻的开机台数/设备总台数*100%

3、设备平均故障间隔时间(MTBF):

定义:设备平均故障间隔时间,英文全称Mean Time Between Failure,缩写为MTBF,是指可修复产品两次相邻故障之间的评价时间,是衡量产品的可靠性指标。

计算公式:MTBF=(∑▒〖(downtime-uptime)〗)/(failure times)

4、设备平均修复时间(MTTR):

定义:设备平均修复时间,英文全称Mean Time To Restoration,缩写为MTTR,是指可修复产品的平均修复时间,即从出现故障到修复中间的这段时间。

MTTR包括确认失效发生所必需的时间,以及维护所需要的时间;而且还包含获得配件的时间,维修团队的响应时间,记录所有任务的时间,还有将设备重新投入使用的时间。MTTR越短表示易恢复性越好。

5、设备综合效率(OEE):

定义:设备综合效率,英文全称Overall Equipment Effectiveness,简称OEE,其本质是实际合格产量与负荷时间内理论产量的比值。设备综合效率考核的核心思想是:一条生产线的实际可用时间只占计划运行时间的一部分,其中可能只发挥了设备部分的性质,而且可能只有部分产品是合格品。

计算公式:设备综合效率=时间开动率×性能开动率×合格品率×100%

6、设备故障率:

定义一:如果是故障频率则是故障次数与设备实际开动台时的比值(故障频率=故障停机次数/设备实际开动台数)。

定义二:如果是故障停机率,则是故障停机台时与设备实际开动台时加上故障停机台时的比值(故障停机率=故障停机台时/(设备实际开动台时+故障停机台时))。

2. 什么是机械设备故障,如何分类

什么是设备故障?
所谓设备故障,一般是指设备失去或降低其规定功能的事件或现象,表现为设备的某些零件失去原有的精度或性能,使设备不能正常运行、技术性能降低,致使设备中断生产或效率降低而影响生产。
设备故障的分类
由于机器设备多种多样,因而故障的形式也有所不同,必须对其进行分类研究,以确定采用何种诊断方法,故障分类的形式主要有几种:
1、按故障存在的程度分类:
•暂时性故障:这类故障带有间断性,是在一定条件下,系统所产生的功能上的故障,通过调整系统参数或运行参数,不需要更换零部件又可恢复系统的正常功能;
•永久性故障:这类故障是由某些零部件损坏而引起的,必须经过更换或修复后才能消除故障。这类故障还可分为完全丧失所应有的完全性故障及导致某些局部功能丧失的局部性故障。
2、按故障发生、发展的进程分类:
•突发性故障:出现故障前无明显征兆,难以靠早期试验或测试来预测。这类故障发生时间很短暂,一般带有破坏性,如转子的断裂,人员误操作引起设备的损毁等属于这一类故障;
•渐发性故障:设备在使用过程中某些零部件因疲劳、腐蚀、磨损等使性能逐渐下降,最终超出所允许值而发生的故障。这类故障占有相当大的比重,具有一定的规律性,能通过早期状态监测和故障预备来预防。
3、按故障严重程度分类:
•破坏性故障:它既是突发性又是永久性的,故障发生后往往危及设备和人身安全;
•非破坏性故障:一般它是渐发性的又是局部性的,故障发生后暂时不会危及设备和人身的安全。
4、按故障发生的原因分类:
•外因故障:因操作人员操作不当或条件恶化而造成的故障,如调节系统的误动作,设备的超速运行等;
•内因故障:设备在运行过程中,因设计或生产方面存在的潜在隐患而造成的故障。如设备上的薄弱环节,制造商残余的局部应力和变形,材料的缺陷等都是潜在的因素。
5、按故障相关性分类:
•相关故障:也可称间接故障。这种故障是由设备其他部件引起的,如滑动轴承因断油而烧瓦的故障是因油路系统故障而引起的,这一点在故障诊断中应予注意;
•非相关故障:也可称直接故障。这是因零部件的本身直接因素引起的对设备进行故障诊断首先应诊断这类故障。

3. 设备故障有哪些分类阶段

设备故障按技术性原因,可分为四大类:即磨损性故障、腐蚀性故障、断裂性故障及老化性故障。
1、磨损性故障
由于运动部件磨损,在某一时刻超过极限值所引起的故障。所谓磨损是指机械在工作过程中,互相接触做相互运动的对偶表面,在摩擦作用下发生尺寸、形状和表面质量变化的现象。按其形成机理又分为粘附磨损、表面疲劳磨损、腐蚀磨损、微振磨损等4种类型。
2、腐蚀性故障
按腐蚀机理不同又可分化学腐蚀、电化学腐蚀和物理腐蚀3类。
化学腐蚀:金属和周围介质直接发生化学反应所造成的腐蚀。反应过程中没有电流产生。电化学腐蚀:金属与电介质溶液发生电化学反应所造成的腐蚀。反应过程中有电流产生。
物理腐蚀:金属与熔融盐、熔碱、液态金属相接触,使金属某一区域不断熔解,另一区域不断形成的物质转移现象,即物理腐蚀。
在实际生产中,常以金属腐蚀不同形式来分类。常见的有8种腐蚀形式,即均匀腐蚀、电偶腐蚀、缝隙腐蚀、小孔腐蚀、晶间腐蚀、选择性腐蚀、磨损性腐蚀、应力腐蚀。
3、断裂性故障
可分脆性断裂、疲劳断裂、应力腐蚀断裂、塑性断裂等。
脆性断裂:可由于材料性质不均匀引起;或由于加工工艺处理不当所引起(如在锻、铸、焊、磨、热处理等工艺过程中处理不当,就容易产生脆性断裂);也可由于恶劣环境所引起;如温度过低,使材料的机械性能降低,主要是指冲击韧性降低,因此低温容器(-20℃以下)必须选用冲击值大于一定值的材料。再如放射线辐射也能引起材料脆化,从而引起脆性断裂。
疲劳断裂:由于热疲劳(如高温疲劳等)、机械疲劳(又分为弯曲疲劳、扭转疲劳、接触疲劳、复合载荷疲劳等)以及复杂环境下的疲劳等各种综合因素共同作用所引起的断裂。
应力腐蚀断裂:一个有热应力、焊接应力、残余应力或其他外加拉应力的设备,如果同时存在与金属材料相匹配的腐蚀介质,则将使材料产生裂纹,并以显著速度发展的一种开裂。如不锈钢在氯化物介质中的开裂,黄铜在含氨介质中的开裂,都是应力腐蚀断裂。又如所谓氢脆和碱脆现象造成的破坏,也是应力腐蚀断裂。
塑性断裂:塑性断裂是由过载断裂和撞击断裂所引起。
4、老化性故障
上述综合因素作用于设备,使其性能老化所引起的故障。
设备故障的阶段:
设备故障,简单地说是一台装置(或其零部件)丧失了它应达到的功能。随着时间的变化,任何设备从投入使用到退役,其故障发生的变化过程大致分三个阶段:早期故障期、偶发故障期和耗损故障期。
1、早期故障期,亦称磨合期,该时期的故障率通常是由于设计、制造及装配等问题引起的。随运行时间的增加,各机件逐渐进入最佳配合状态,故障率也逐渐降至最低值。
2、偶发故障或随机故障期的故障是由于使用不当、操作疏忽、润滑不良、维护欠佳、材料隐患、工艺缺陷等偶然原因所致,没有一种特定的失效机理主导作用,因而故障是随机的。
3、机械长期使用后,零部件因磨损、疲劳,其强度和配合质量迅速下降而引起的,其损坏属于老化性质。
所谓设备故障,一般是指设备失去或降低其规定功能的事件或现象,表现为设备的某些零件失去原有的精度或性能,使设备不能正常运行、技术性能降低,致使设备中断生产或效率降低而影响生产。设备在使用过程中,由于磨擦、外力、应力及化学反应的作用,零件总会逐渐磨损和腐蚀、断裂导致因故障而停机。加强设备保养维修,及时掌握零件磨损情况,在零件进入剧烈磨损阶段前,进行修理更换,就可防止故障停机所造成的经济损失。

4. 机械设备故障率如何计算

设备的故障率

1.1 设备故障率浴盆曲线及特点

通过对设备故障进行研究,发现大部分机械设备故障率曲线如图1所示。这种故障曲线常被叫做浴盆曲线。按照这种故障曲线,设备故障率随时间的变化大致分早期故障期、偶发故障期和耗损故障期。
早期故障期对于机械产品又叫磨合期。在此期间,开始的故障率很高,但随时间的推移,故障率迅速下降。此期间发生的故障主要是设计、制造上的缺陷所致,或使用不当所造成的。进入偶发故障期,设备故障率大致处于稳定状态。在此期间,故障发生是随机的,其故障率最低,而且稳定,这是设备的正常工作期或最佳状态期。在此间发生的故障多因为设计、使用不当及维修不力产生的,可以通过提高设计质量、改进管理和维护保养使故障率降到最低。在设备使用后期,由于设备零部件的磨损、疲劳、老化、腐蚀等,故障率不断上升。因此认为如果在耗损故障期开始时进行大修,可经济而有效地降低故障率。 1.2 现代化设备的故障率曲线

随着科学技术的发展,大量新技术、新材料不断涌现,特别是电子技术、自动化技术的广泛应用,设备正朝着精确化、自动化方向发展。设备的结构、各工作单元的关系和环境变得越来越复杂,这给设备维修工作带来了新问题。
人们通过研究发现一些用现代技术装备的设备,故障规律与浴盆曲线相背离。经过近30多年的研究,设备的故障率除了浴盆曲线外,还有五种情况[1],如图2所示。
曲线A显示了恒定的或者略增的故障率,有明显的磨损期。曲线B显示了缓慢增长的故障率,但没有明显的磨损期。曲线C显示了新设备从刚出厂的低故障率,急剧地增长到一个恒定的故障率。曲线D显示设备的故障为恒定值,出现的故障常常是偶然因素造成的。而曲线E显示设备开始有高的初期故障率,然后急剧下降到一个恒定的或者是增长极为缓慢的故障率。
通过对民用飞机的故障进行统计调查发现,4%的设备遵循典型的浴盆曲线,2%的设备遵循曲线A,5%的设备遵循曲线B,7%的设备遵循曲线C,14%的设备遵循曲线D,不少于68%的设备遵循曲线E。一般来说,在实际运行中,设备的故障率应该是图2所示的五种曲线中的一种或几种的合成(浴盆曲线可以看作曲线A、D和E的合成),其故障率可能与民用飞机的故障率不完全相同。但是,设备故障率取决于设备的复杂性,设备越复杂,其故障曲线越是接近于曲线D和E。图片发不上来,请自己参考http://www.spc.com.cn/spcspc/Chinese/tep/2004/200403/gl-1.htm

5. 什么是设备故障,都有哪些种类类型

所谓设备故障,一般是指设备失去或降低其规定功能的事件或现象,表现为设备的某些零件失去原有的精度或性能,使设备不能正常运行、技术性能降低,致使设备中断生产或效率降低而影响生产。
设备在使用过程中,由于磨擦、外力、应力及化学反应的作用,零件总会逐渐磨损和腐蚀、断裂导致因故障而停机。加强设备保养维修,及时掌握零件磨损情况,在零件进入剧烈磨损阶段前,进行修理更换,就可防止故障停机所造成的经济损失。
故障这一术语,在实际使用时常常与异常、事故等词语混淆。所谓异常,意思是指设备处于不正常状态,那么,正常状态又是一种什么状态呢?如果连判断正常的标准都没有,那么就不能给异常下定义。对故障来说,必须明确对象设备应该保持的规定性能是什么,以及规定的性能现在达到什么程度,否则,同样不能明确故障的具体内容。假如某对象设备的状态和所规定的性能范围不相同,则要认为该设备的异常即为故障。反之,假如对象设备的状态,在规定性能的许可水平以内,此时,即使出现异常现象,也还不能算作是故障。总之,设备管理人员必须把设备的正常状态、规定性能范围,明确地制订出来。只有这样,才能明确异常和故障现象之间的相互关系,从而,明确什么是异常,什么是故障。如果不这样做就不能免除混乱。
事故也是一种故障,是侧重安全与费用上的考虑而建立的术语,通常是指设备失去了安全的状态或设备受到非正常损坏等。
设备故障按技术性原因,可分为四大类:即磨损性故障、腐蚀性故障、断裂性故障及老化性故障。
1、磨损性故障
由于运动部件磨损,在某一时刻超过极限值所引起的故障。所谓磨损是指机械在工作过程中,互相接触做相互运动的对偶表面,在摩擦作用下发生尺寸、形状和表面质量变化的现象。按其形成机理又分为粘附磨损、表面疲劳磨损、腐蚀磨损、微振磨损等4种类型。
2、腐蚀性故障
按腐蚀机理不同又可分化学腐蚀、电化学腐蚀和物理腐蚀3类。
化学腐蚀:金属和周围介质直接发生化学反应所造成的腐蚀。反应过程中没有电流产生。电化学腐蚀:金属与电介质溶液发生电化学反应所造成的腐蚀。反应过程中有电流产生。
物理腐蚀:金属与熔融盐、熔碱、液态金属相接触,使金属某一区域不断熔解,另一区域不断形成的物质转移现象,即物理腐蚀。
在实际生产中,常以金属腐蚀不同形式来分类。常见的有8种腐蚀形式,即均匀腐蚀、电偶腐蚀、缝隙腐蚀、小孔腐蚀、晶间腐蚀、选择性腐蚀、磨损性腐蚀、应力腐蚀。
3、断裂性故障
可分脆性断裂、疲劳断裂、应力腐蚀断裂、塑性断裂等。
脆性断裂:可由于材料性质不均匀引起;或由于加工工艺处理不当所引起(如在锻、铸、焊、磨、热处理等工艺过程中处理不当,就容易产生脆性断裂);也可由于恶劣环境所引起;如温度过低,使材料的机械性能降低,主要是指冲击韧性降低,因此低温容器(-20℃以下)必须选用冲击值大于一定值的材料。再如放射线辐射也能引起材料脆化,从而引起脆性断裂。
疲劳断裂:由于热疲劳(如高温疲劳等)、机械疲劳(又分为弯曲疲劳、扭转疲劳、接触疲劳、复合载荷疲劳等)以及复杂环境下的疲劳等各种综合因素共同作用所引起的断裂。
应力腐蚀断裂:一个有热应力、焊接应力、残余应力或其他外加拉应力的设备,如果同时存在与金属材料相匹配的腐蚀介质,则将使材料产生裂纹,并以显著速度发展的一种开裂。如不锈钢在氯化物介质中的开裂,黄铜在含氨介质中的开裂,都是应力腐蚀断裂。又如所谓氢脆和碱脆现象造成的破坏,也是应力腐蚀断裂。
塑性断裂:塑性断裂是由过载断裂和撞击断裂所引起。
4、老化性故障
上述综合因素作用于设备,使其性能老化所引起的故障。

6. 简述什么是工程机械故障率

1.1 设备故障率浴盆曲线及特点

通过对设备故障进行研究,发现大部分机械设备故障率曲线如图1所示。这种故障曲线常被叫做浴盆曲线。按照这种故障曲线,设备故障率随时间的变化大致分早期故障期、偶发故障期和耗损故障期。
早期故障期对于机械产品又叫磨合期。在此期间,开始的故障率很高,但随时间的推移,故障率迅速下降。此期间发生的故障主要是设计、制造上的缺陷所致,或使用不当所造成的。进入偶发故障期,设备故障率大致处于稳定状态。在此期间,故障发生是随机的,其故障率最低,而且稳定,这是设备的正常工作期或最佳状态期。在此间发生的故障多因为设计、使用不当及维修不力产生的,可以通过提高设计质量、改进管理和维护保养使故障率降到最低。在设备使用后期,由于设备零部件的磨损、疲劳、老化、腐蚀等,故障率不断上升。因此认为如果在耗损故障期开始时进行大修,可经济而有效地降低故障率。 1.2 现代化设备的故障率曲线

随着科学技术的发展,大量新技术、新材料不断涌现,特别是电子技术、自动化技术的广泛应用,设备正朝着精确化、自动化方向发展。设备的结构、各工作单元的关系和环境变得越来越复杂,这给设备维修工作带来了新问题。
人们通过研究发现一些用现代技术装备的设备,故障规律与浴盆曲线相背离。经过近30多年的研究,设备的故障率除了浴盆曲线外,还有五种情况[1],如图2所示。
曲线A显示了恒定的或者略增的故障率,有明显的磨损期。曲线B显示了缓慢增长的故障率,但没有明显的磨损期。曲线C显示了新设备从刚出厂的低故障率,急剧地增长到一个恒定的故障率。曲线D显示设备的故障为恒定值,出现的故障常常是偶然因素造成的。而曲线E显示设备开始有高的初期故障率,然后急剧下降到一个恒定的或者是增长极为缓慢的故障率。
通过对民用飞机的故障进行统计调查发现,4%的设备遵循典型的浴盆曲线,2%的设备遵循曲线A,5%的设备遵循曲线B,7%的设备遵循曲线C,14%的设备遵循曲线D,不少于68%的设备遵循曲线E。一般来说,在实际运行中,设备的故障率应该是图2所示的五种曲线中的一种或几种的合成(浴盆曲线可以看作曲线A、D和E的合成),其故障率可能与民用飞机的故障率不完全相同。但是,设备故障率取决于设备的复杂性,设备越复杂,其故障曲线越是接近于曲线D和E

阅读全文

与机器设备故障率正常范围相关的资料

热点内容
黑龙江特种设备检验研究院 浏览:210
机械化养护中心 浏览:838
上海特种设备管理 浏览:48
机械师改枪 浏览:181
机械化剪纸 浏览:757
美燃环保设备 浏览:809
济南北斗星数控设备有限公司 浏览:838
自动喷涂机械手 浏览:457
中小型农业机械加工项目建议书 浏览:251
不锈钢加工设备市转让 浏览:441
水稻生产全程机械化 浏览:110
扳手机械原理 浏览:61
凯格精密机械有限公司 浏览:61
广毅机电设备 浏览:805
重庆三阳办公设备有限公司 浏览:494
华技达自动化设备 浏览:631
东莞石碣自动化设备厂 浏览:131
机械制图陈列柜 浏览:246
郑州奥鑫游乐设备公司 浏览:733
美邦环保设备有限公司 浏览:386