导航:首页 > 精密设计 > 机械原理教案设计模板

机械原理教案设计模板

发布时间:2021-04-16 10:57:11

⑴ 什么叫机械(教学设计)

机械是指机器与机构的总称。机械就是能帮人们降低工作难度或省力的工具装置,像筷子、扫帚以及镊子一类的物品都可以被称为机械,他们是简单机械。而复杂机械就是由两种或两种以上的简单机械构成。通常把这些比较复杂的机械叫做机器。从结构和运动的观点来看,机构和机器并无区别,泛称为机械。
1、构件多功能设计
所谓构件多功能就是一个构件具有多个作用功能.在机构运作过程中能产生多个有用的动作。例如:在进料机构中推料构件既有推料到位的作用又有定位夹紧的功能在夹紧机构中,压紧构件既起压紧作用又有定位的功能;在作往复运动的机构中,对行程开关触动构件。既起触发机构作反向运动的作用,又有推动计数器作记录的功能。
采用构件多功能的设计,可使结构简单、紧凑和灵巧,可使机构运行稳定可靠。
2、运动交换机构简单可靠
运动变换机构的设计,要根据使用的功能要求和技术条件,选择合理的机构,力求机构能简单可靠地实现运动形式和运动方向的变换能方便地进行作用力和工作位里的调节。机构类型的选择,要考虑其固有的特性,例如:减速机构必有省力和运行较平稳的功能。反之,增速机构不省力也不大平稳但有增大行程(或增大转角)和延时的作用。
机械工程的服务领域广阔而多面,凡是使用机械、工具,以至能源和材料生产的部门,都需要机械工程的服务。概括说来,现代机械工程有五大服务领域:研制和提供能量转换机械、研制和提供用以生产各种产品的机械、研制和提供从事各种服务的机械、研制和提供家庭和个人生活中应用的机械、研制和提供各种机械武器。
不论服务于哪一领域,机械工程的工作内容基本相同,主要有:
建立和发展机械工程的工程理论基础。例如:研究力和运动的工程力学和流体力学;研究金属和非金属材料的性能,及其应用的工程材料学;研究热能的产生、传导和转换的热力学;研究各类有独立功能的机械元件的工作原理、结构、设计和计算的机械原理和机械零件学;研究金属和非金属的成形和切削加工的金属工艺学和非金属工艺学等等。
研究、设计和发展新的机械产品,不断改进现有机械产品和生产新一代机械产品,以适应当前和将来的需要。
机械产品的生产,包括:生产设施的规划和实现;生产计划的制订和生产调度;编制和贯彻制造工艺;设计和制造工具、模具;确定劳动定额和材料定额;组织加工、装配、试车和包装发运;对产品质量进行有效的控制。
机械制造企业的经营和管理。机械一般是由许多各有独特的成形、加工过程的精密零件组装而成的复杂的制品。生产批量有单件和小批,也有中批、大批,直至大量生产。销售对象遍及全部产业和个人、家庭。而且销售量在社会经济状况的影响下,可能出现很大的波动。因此,机械制造企业的管理和经营特别复杂,企业的生产管理、规划和经营等的研究也多是肇始于机械工业。
机械产品的应用这方面包括选择、订购、验收、安装、调整、操作、维护、修理和改造各产业所使用的机械和成套机械装备,以保证机械产品在长期使用中的可靠性和经济性。
研究机械产品在制造过程中,尤其是在使用中所产生的环境污染,和自然资源过度耗费方面的问题,及其处理措施。这是现代机械工程的一项特别重要的任务,而且其重要性与日俱增。

⑵ 机械原理设计——自动钢板折边机

构件是机械设计最基础的东西,不会很难的..按照模板一步一步就能出来了

⑶ 急急急!机械原理课程设计 设计题目是插齿机 肿么做啊,明天就要交了。内牛满面呀。进来看看帮帮我吧

随便找你们上一级的师兄更好~~直接搞过来,借鉴借鉴~~嘿嘿~~~你要相信~~大学是“混”出来滴~~!只要有诚意,老师都会给过~~除了某些要求高的高校~~你懂了?

⑷ 求机械原理基础知识和基本公式及用法

搞机械设计的必备的基础专业知识包括:《机械制图》;《机械原理》;《机械零专件》;《工程力学》;属《公差配合》;《金属材料热处理》等。学习、掌握专业基础知识是非常重要的。同时,拥有专业资料、工具书,也是比不可少的。

《机械原理》:
根据机械原理教学基本要求编写,内容包括平面机构的结构分析、机构的运动分析、连杆机构、凸轮机构、齿轮机构、其他常用机构、机械的平衡、机器运转和速度波动的调节、平面机构的力分析以及Matlab语言在机械原理中的应用。按照实际可能完成的教学任务以及卓越工程师培养计划的要求安排教学内容,并根据教学的实际情况,通俗易懂、难度适当地讲述机械原理的课程内容。

⑸ 武汉理工机械原理教学课件

机械原理没有课件,老师都是板书的

⑹ 求四杆机构课程设计模板或者方法

机械原理课程设计
任务书
题目:四杆机构设计B4-b
姓名:郑大鹏
班级:机械设计制造及其自动化
设计参数
转角关系的期望函数 连架杆转角范围 计算间隔 设计计算

手工 编程 确定:a,b,c,d四杆的长度,以及在一个工作循环内每一计算间隔的转角偏差值

60° 85° 2° 0.5°
y=㏑x(1≦x≦2)

设计要求:
1.用解析法按计算间隔进行设计计算;
2.绘制3号图纸1张,包括:
(1)机构运动简图;
(2)期望函数与机构实现函数在计算点处的对比表;
(3)根据对比表绘制期望函数与机构实现函数的位移对比图;
3.设计说明书一份;
4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独立完成任务。

目录
第1节 平面四杆机构设计 3
1.1连杆机构设计的基本问题 3
1.2作图法设计四杆机构 3
1.3 解析法设计四杆机构 3
第2节 设计介绍 5
2.1按预定的两连架杆对应位置设计原理 5
2.2 按期望函数设计 6
第3节 连杆机构设计 8
3.1连杆机构设计 8
3.2变量和函数与转角之间的比例尺 8
3.3确定结点值 8
3.4 确定初始角 、 9
3.5 杆长比m,n,l的确定 13
3.6 检查偏差值 13
3.7 杆长的确定 13
3.8 连架杆在各位置的再现函数和期望函数最小差值 的确定 15
总结 18
参考文献 19
附录 20

第1节 平面四杆机构设计
1.1连杆机构设计的基本问题
连杆机构设计的基本问题是根据给定的要求选定机构的型式,确定各构件的尺寸,同时还要满足结构条件(如要求存在曲柄、杆长比恰当等)、动力条件(如适当的传动角等)和运动连续条件等。
根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三类问题:
(1)预定的连杆位置要求;
(2)满足预定的运动规律要求;
(3)满足预定的轨迹要求;
连杆设计的方法有:解析法、作图法和实验法。
1.2作图法设计四杆机构
对于四杆机构来说,当其铰链中心位置确定后,各杆的长度
也就确定了。用作图法进行设计,就是利用各铰链之间相对运动
的几何关系,通过作图确定各铰链的位置,从而定出各杆的长度。
根据设计要求的不同分为四种情况 :
(1) 按连杆预定的位置设计四杆机构
(2) 按两连架杆预定的对应角位移设计四杆机构
(3) 按预定的轨迹设计四杆机构
(4) 按给定的急回要求设计四杆机构
1.3 解析法设计四杆机构
在用解析法设计四杆机构时,首先需建立包含机构各尺度参数和运动变量在内的解析式,然后根据已知的运动变量求机构的尺度参数。现有三种不同的设计要求,分别是:
(1) 按连杆预定的连杆位置设计四杆机构
(2) 按预定的运动轨迹设计四杆机构
(3) 按预定的运动规律设计四杆机构
1) 按预定的两连架杆对应位置设计
2) 按期望函数设计
本次连杆机构设计采用解析法设计四杆机构中的按期望函数设计。下面在第2节将对期望函数设计四杆机构的原理进行详细的阐述。

第2节 设计介绍
2.1按预定的两连架杆对应位置设计原理
如下图所示:

设要求从动件3与主动件1的转角之间满足一系列的对应位置关系,即 = i=1, 2,… ,n其函数的运动变量为 由设计要求知 、 为已知条件。有 为未知。又因为机构按比例放大或缩小,不会改变各机构的相对角度关系,故设计变量应该为各构件的相对长度,如取d/a=1 , b/a=l c/a=m , d/a=n 。故设计变量l、m、n以及 、 的计量起始角 、 共五个。如图所示建立坐标系Oxy,并把各杆矢量向坐标轴投影,可得

为消去未知角 ,将上式 两端各自平方后相加,经整理可得
令 =m, =-m/n, = ,则上式可简化为:
2-2

式 2-2 中包含5个待定参数 、 、 、 、及 ,故四杆机构最多可以按两连架杆的5个对应位置精度求解。
2.2 按期望函数设计
如上图所示,设要求设计四杆机构两连架杆转角之间实现的函数关系 (成为期望函数),由于连架杆机构的待定参数较少,故一般不能准确实现该期望函数。设实际实现的函数为月 (成为再现函数),再现函数与期望函数一般是不一致的。设计时应该使机构的再现函数尽可能逼近所要求的期望函数。具体作法是:在给定的自变量x的变化区间 到 内的某点上,使再现函数与期望函数的值相等。从几何意义上 与 两函数曲线在某些点相交。
这些点称为插值结点。显然在结点处:

故在插值结点上,再现函数的函数值为已知。这样,就可以按上述方法来设计四杆机构。这种设计方法成为插值逼近法。
在结点以外的其他位置, 与 是不相等的,其偏差为

偏差的大小与结点的数目及其分布情况有关,增加插值结点的数目,有利于逼近精度的提高。但结点的数目最多可为5个。至于结点位置分布,根据函数逼近理论有
2-3
试中i=1,2, … ,3,n为插值结点数。
本节介绍了采用期望函数设计四杆机构的原理。那么在第3节将
具体阐述连杆机构的设计。

第3节 连杆机构设计
3.1连杆机构设计
设计参数表
转角关系的期望函数 连架杆转角范围 计算间隔 设计计算

手工 编程 确定:a,b,c,d四杆的长度,以及在一个工作循环内每一计算间隔的转角偏差值

60° 85° 2° 0.5°
y=㏑x(1≦x≦2)

注:本次采用编程计算,计算间隔0.5°
3.2变量和函数与转角之间的比例尺
根据已知条件y=㏑x(1≦x≦2)为铰链四杆机构近似的实现期望函数,
设计步骤如下:
(1)根据已知条件 , ,可求得 , 。
(2)由主、从动件的转角范围 =60°、 =85°确定自变量和函数与转角之间的比例尺分别为:

3.3确定结点值
设取结点总数m=3,由式2-3可得各结点处的有关各值如表(3-1)所示。
表(3-1) 各结点处的有关各值

1 1.067 0.065 4.02° 7.97°
2 1.500 0.405 30.0° 49.68°
3 1.933 0.659 55.98° 80.83°

3.4 确定初始角 、
通常我们用试算的方法来确定初始角 、 ,而在本次连杆设计中将通过编程试算的方法来确定。具体思路如下:
任取 、 ,把 、 取值与上面所得到的三个结点处的 、 的值代入P134式8-17

从而得到三个关于 、 、 的方程组,求解方程组后得出 、 、 ,再令 =m, =-m/n, = 。然
求得后m,n,l的值。由此我们可以在机构确定的初始值条件下找
到任意一位置的期望函数值与再现函数值的偏差值 。当
时,则视为选取的初始、角度 满足机构的运动要求。
具体程序如下:
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define PI 3.1415926
#define t PI/180
void main()
{
int i;
float p0,p1,p2,a0,b0,m,n,l,a5;
float A,B,C,r,s,f1,f2,k1,k2,j;
float u1=1.0/60,u2=0.93/685,x0=1.0,y0=0.0;
float a[3],b[3],a1[6],b1[3];
FILE *p;
if((p=fopen("d:\\zdp.txt","w"))==NULL)
{
printf("can't open the file!");
exit(0);
}
a[0]=4.02;
a[1]=30;
a[2]=55.98;
b[0]=7.97;
b[1]=49.68;
b[2]=80.83;
printf("please input a0: \n");
scanf("%f",&a0);
printf("please input b0: \n");
scanf("%f",&b0);
for(i=0;i<3;i++)
{
a1[i]=cos((b[i]+b0)*t);
a1[i+3]=cos((b[i]+b0-a[i]-a0)*t);
b1[i]=cos((a[i]+a0)*t);
}
p0=((b1[0]-b1[1])*(a1[4]-a1[5])-(b1[1]-b1[2])*(a1[3]-a1[4]))/
((a1[0]-a1[1])*(a1[4]-a1[5])-(a1[1]-a1[2])*(a1[3]-a1[4]));
p1=(b1[0]-b1[1]-(a1[0]-a1[1])*p0)/(a1[3]-a1[4]);
p2=b1[0]-a1[0]*p0-a1[3]*p1;
m=p0;
n=-m/p1;
l=sqrt(m*m+n*n+1-2*n*p2);
printf("p0=%f,p1=%f,p2=%f,m=%f,n=%f,l=%f\n",p0,p1,p2,m,n,l);
fprintf(p,"p0=%f,p1=%f,p2=%f,m=%f,n=%f,l=%f\n",p0,p1,p2,m,n,l);
printf("\n");
fprintf(p,"\n");
for(i=0;i<5;i++)
{printf("please input one angle of fives(0--60): ");
scanf("%f",&a5);
printf("when the angle is %f\n",a5);
fprintf(p,"when the angle is %f\n",a5);
A=sin((a5+a0)*t);
B=cos((a5+a0)*t)-n;
C=(1+m*m+n*n-l*l)/(2*m)-n*cos((a5+a0)*t)/m;
j=x0+u1*a5;
printf("A=%f,B=%f,C=%f,j=%f\n",A,B,C,j);
s=sqrt(A*A+B*B-C*C);
f1=2*(atan((A+s)/(B+C)))/(t)-b0;
f2=2*(atan((A-s)/(B+C)))/(t)-b0;
r=(log(j)-y0)/u2;
k1=f1-r;
k2=f2-r;
printf("r=%f,s=%f,f1=%f,f2=%f,k1=%f,k2=%f\n",r,s,f1,f2,k1,k2);
fprintf(p,"r=%f,s=%f,f1=%f,f2=%f,k1=%f,k2=%f\n",r,s,f1,f2,k1,k2);
printf("\n\n");
fprintf(p,"\n\n");
}
}
结合课本P135,试取 =86°, =24°时:
程序运行及其结果为:
p0=0.601242,p1=-0.461061,p2=-0.266414,m=0.601242,n=1.304040,l=1.938257

when the angle is 0.000000
r=0.000000,s=1.409598,f1=-125.595070,f2=-0.296147,k1=-125.595070,k2=-0.296147

when the angle is 4.020000
r=7.954308,s=1.538967,f1=-130.920624,f2=7.970002,k1=-138.874939,k2=0.015694

when the angle is 30.000000
r=49.732372,s=1.924767,f1=-152.252411,f2=49.680004,k1=-201.984787,k2=-0.052368

when the angle is 55.980000
r=80.838707,s=1.864505,f1=-161.643921,f2=80.830002,k1=-242.482635,k2=-0.008705

when the angle is 60.000000
r=85.018051,s=1.836746,f1=-162.288574,f2=84.909149,k1=-247.306625,k2=-0.108902

由程序运行结果可知:当取初始角 =86°、 =24°时 ( =k1(k2))所以所选初始角符合机构的运动要求。
3.5 杆长比m,n,l的确定
由上面的程序结果可得m=0.601242, n=1.304040, l=1.938257。
3.6 检查偏差值
对于四杆机构,其再现的函数值可由P134式8-16求得
3-2

式中: A=sin( ) ;
B=cos( )-n ;
C= - ncos( )/m
按期望函数所求得的从动件转角为
3-3

则偏差为

若偏差过大不能满足设计要求时,则应重选计量起始角
、 以及主、从动件的转角变化范围 、 等,重新进行设计。同样由上面的程序运行结果得出每一个取值都符合运动要求,即 :
=k1(k2)) (
3.7 杆长的确定
根据杆件之间的长度比例关系m,n,l和这样的关系式b/a=l c/a=m d/a=n确定各杆的长度,当选取主动杆的长度后,其余三杆长的度随之可以确定;在此我们假设主动连架杆的长度为 a=50 ,则确定其余三杆的长度由下面的程序确定:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
void main()
{
float a=50,b,c,d;
float m=0.601242,n=1.304040,l=1.938257;
FILE *p;
if((p=fopen("d:\\zdp.txt","w"))=NULL)
{
printf("can't open the file!");
exit(0);
}
b=l*a;
c=m*a;
d=n*a;
printf("a=%f\nb=%f\nc=%f\nd=%f\n",a,b,c,d);
fprintf(p,"a=%f\nb=%f\nc=%f\nd=%f\n",a,b,c,d);
fclose(p);
}
运行结果为:
a=50.000000
b=96.912849
c=30.062099
d=65.201996
3.8 连架杆在各位置的再现函数和期望函数最小差值 的确定
如下面的程序:
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define PI 3.1415926
#define t PI/180
void main()
{
float a0=86,b0=24,m=0.601242,n=1.304040,l=1.938257;
float A,B,C,s,j,k1,k2,k;
float x0=1.0,y0=0.0,u1=1.0/60,u2=0.693/85 ;
float x[130],y1[130],y2[130],a1[130],f1[130],f2[130],r[130];
int i;
FILE *p;
if((p=fopen("d:\\zdp.txt","w"))==NULL)
{
printf("can't open the file! ");
exit(0);
}
printf(" i a1[i] f1[i] r[i] k x[i] y1[i] y2[i]\n\n");
fprintf(p," i a1[i] f1[i] r[i] k x[i] y1[i] y2[i]\n\n");
for(i=0; a1[i]<=60;i++)
{
a1[0]=0;
A=sin((a1[i]+a0)*t);
B=cos((a1[i]+a0)*t)-n;
C=(1+m*m+n*n-l*l)/(2*m)-n*cos((a1[i]+a0)*t)/m;
j=x0+u1*a1[i];
s=sqrt(A*A+B*B-C*C);
f1[i]=2*(atan((A+s)/(B+C)))/(t)-b0;
f2[i]=2*(atan((A-s)/(B+C)))/(t)-b0;
r[i]=(pow(j,1.0/3)-y0)/u2;
k1=f1[i]-r[i];
k2=f2[i]-r[i];
x[i]=a1[i]*u1+x0;
y2[i]=log(x[i]);
if(abs(k1)<abs(k2))
{
k=k1;
y1[i]=f1[i]*u2+y0;
printf(" %-4d %-5.1f %-10.4f %-8.4f %-8.4f %-7.4f %-8.4f %0.4f\n",i,a1[i],f1[i],r[i],k,x[i],y1[i],y2[i]);
fprintf(p," %-4d %-5.1f %-10.4f %-8.4f %-8.4 %-7.4f %-8.4f %0.4f\n",i,a1[i],f1[i],r[i],k,x[i],y1[i],y2[i]);
}
else
{
k=k2;
y1[i]=f2[i]*u2+y0;
printf(" %-6d%-7.1f%-12.4f%-10.4f%-10.4f%-9.4f%-10.4f%2.4f\n",i,
a1[i],f2[i],r[i],k,x[i],y1[i],y2[i]);
fprintf(p,"%-6d%-7.1f%-12.4f%-10.4f%-10.4f%-9.4f%-10.4f%2.4f\n",i,
a1[i],f2[i],r[i],k,x[i],y1[i],y2[i]);
}
a1[i+1]=a1[i]+0.5;
}
fclose(p);
}
程序运行结果见附录。

总结
通过本次课程设计,让我学会了用解析法中的按期望函数设计连杆机构,理解了这一设计原理,知道怎样实现连杆机构两连架杆的转角之间的期望函数与再现函数之间的关系。
在本次设计中,有一个非常重要的环节——确定初始角 、 的值。这一环节我采用了C程序的方法来求解。虽然没有用笔算那样繁琐,但是在编写程序时,由于公式多,公式中设计的三角函数比较麻烦,因而在设计中我遇到了很多大小不同的问题,但是最终凭借对公式的理解和对C程序的进一步掌握完成了这一解析问题。只有确定了初始角 、 ,才能正确检查偏差值 ,得到一对最理想的初始角使得偏差值 。通过C程序的求解,得出的结果说明能较好的满足连杆机构的设计要求。
本次课程设计,从不知道如何下手到完成。我学到了很多的东西,掌握了课程设计书的书写格式,为以后的设计打下了良好的基础。

参考文献:
【1】孙恒,陈作模,葛文杰 . 机械原理[M] . 7版 . 北京:高等教育出版社,2006。
【2】孙恒,陈作模 . 机械原理[M] . 6版 . 北京:高等教育出版社,2001。

附录:i为序列号 a1[i]= f1[i]= r[i] = k =
x[i]为自变量 y1[i]为再现函数值 y2[i]为望函数值

⑺ 机械原理大纲

1.教材体系与特点 适应我校机械大类教学改革,推行学分制新形势的需求, 新编适合学分制教学,改革力度大的,内容新颖, 适应面宽的新世纪机械原理教材。 新知识,新技术的出现,对现代教学体系与内容是极大的冲击, 教学要改革,才能适应时代发展的需要。 教材根据机械设计与机械制造过程的发展, 将机械原理课程的教学体系进行全面改革,引入现代设计内容, 教学体系与多媒体教学结合,从提高学生创新设计能力入手, 加强工程设计和实践内容,着重设计技能的基本训练, 拓宽学生知识面,全面提高学生的综合素质。 2.教材特色 教材针对2l世纪科学技术的发展, 现代产品设计中对具有创新精神人才的需要, 注重学生全面素质的培养,拓宽专业口径。 由专业教育转向通识教育,本书以机械设计基础知识为主线, 机构系统创新设计为重点,注重与相关系列教材内容紧密结合; 在内容取舍上,注意先进性与实用性,知识面的广阔性; 在内容编排上,注重有利于培养学生创新意识和能力, 将设计内容和设计方法有机的融合,增加了机构系统创新设计、 广义机构等内容,加强了机构运动方案设计及结构创新设计、 机构在工程中的应用的内容。文字叙述力求简明、通俗。 3. 教材是在在承担国家教委面向21世纪课程体系和教学内容改革项目 ——“工程制图及机械基础系列课程教学内容与课程体系改革” 的过程中,我们在系列课程整体优化与协调的基础上, 将本书在教学体系与内容上进行了系统改革, 重视介绍学科发展的新方向,新内容,从整个机械系统着眼, 着重培养学生创新设计能力,不仅向学生提供创新思维方法, 还通过大量实际的设计问题, 提高学生的独立工作和解决实际问题的能力, 在教学体系和教学内容上,注重激发学生的求知欲望, 调动学习的积极性,开阔思路,拓宽知识面, 让学生了解更多更新的理论和技术。通过机械设计基础教学, 培养学生的机械设计能力、产品开发和创新思维能力。 4.教材根据现代自动化机电产品设计的要求, 介绍了机械系统设计的特点和方法, 机构的功能及机构选型与机构结构设计的原则和方法。 其目的是扩大视野,拓宽知识面,进行创新思维的训练, 提高创新设计能力和独立工作的能力, 培养工程意识和工程实践能力。 5.教材7章,采用文字、图表及图文对照的形式。 本课程有三个教学环节(讲课(28、实验4、课程设计20), 初步拟订30---35万字,字数与学时相当,内容协调。 教材适用性强,供大机类与专科学生使用,量大面广。 机械原理大纲 课程名称:机械原理 学时:32 学分:2 先修课程:高等数学、工程图学、金属工艺学、计算机基础、 工程力学 一.机械原理课程的性质、目的及任务 机械原理是讲授机械传动、 常用机构在设计中共性问题的一门主干技术基础课, 为适应大机类各专业对现代自动化机械设计及在机构选型设计方面的 要求,本课程着重讲述了常用机构的工作原理和简单的设计方法, 机构选型的原则,其目的是扩大视野,拓宽知识面, 提高创新设计能力。 二、课程主要内容 绪论 §0 1 机械设计的主要过程 §0 2 课程的性质、任务和内容 §0 3 机械设计及理论学科发展趋势 第一章平面机构具有确定运动的条件 §1 1 平面机构运动简图的绘制 §1 2 平面机构具有确定运动的条件 第二章平面连杆机构设计 §2 1平面四杆机构的基本型式及演化 §2 2平面四杆机构设计中的共性问题 §2 3平面四杆机构的设计 §2 4平面四杆机构的结构设计 §2 5 连杆机构在工程中的应用 第三章凸轮机构设计 §3 1 凸轮机构的分类 §3 2 从动件常用运动规律 §3 3 盘形凸轮轮廓曲线的确定 §3 4 盘形凸轮机构的基本尺寸 §3 5 盘形凸轮机构的结构设计 §3 6 凸轮机构在工程中的应用 第四章齿轮机构设计 §4 1 齿轮机构的类型和特点 §4 2 渐开线和渐开线齿廓的啮合特点 §4 3 直齿圆柱齿轮传动 §4 4 斜齿圆柱齿轮传动 §4 5 直齿锥齿轮传动 §4 6 轮系及其在工程中的应用 第五章其他机构 §5 1 间歇运动机构 §5 2 广义机构 §5 3具有其他功能的机构 §5 4 其他机构在工程中的应用 第六章 机构系统创新设计 §6 1 机构系统运动方案设计 §6 2 机构选型 §6 3 机构系统创新设计 三、课程的基本要求 (一) 理论教学 (二) 课程设计 (三) 教学实验 三个环节 达到上述基本要求的讲课的课内学时为32学时, 实验及现场课的课内学时为4学时;复习、做习题、写实验报告、 看电视录相的课外学时为60学时以上,课程设计集中上(1. 5周)。 四、授课对象 机械大类各专业

⑻ 机械原理课程设计插床机构设计 8点9点

⑼ 机械原理的教学方法

(1)应用多媒体与板书相结合的教学方法。充分发挥学校数字化教室的硬件优势。多媒体软件和资源对于提出问题,揭示矛盾,从工程背景引出理论问题,培养学生发现问题的能力具有很好的效果。并对于扩大课堂信息量,增进工程实践意识,开展师生交互式教学,加强学生对重点、难点的理解和记忆,具有明显的效果。同时,也要利用板书解决讲授中的重点、难点,遵循由浅入深、由简单到复杂、由易到难的教学规律,使学生易于理解所学知识。
(2)在教学中注意在简捷的数学推导过程中突出思路、突出方法。因此,在数学推导前,首先要有定性分析,使学生懂得“问题是什么?”、“问题的性质是什么?”、“解决问题的方法是什么?”特别注意启发式教学,少一些理论与推导,多一些问题的分析与讨论。
(3)大学教育应该是“授人以渔” 不是“授人以鱼”。因而在教学过程中关键是要教会学生学习的方法,使得终身受益。要为学生留出充分的思维空间,留出一些问题让学生去想、去自学、去研究;要改变教师“一言堂”,展开课堂讨论,活跃学术气氛。在选课后习题时,要精而少,避免学生照猫画虎,让学生自己去思考学过的知识,并把知识应用到解题中。
通过该课程的先进教学方法和教学手段,使学生在较短课时掌握较多知识。学生从对本专业的茫然到了解,最后热爱专业,学生不仅要知道机械原理的内容、思维方式和解决问题的方法,而且要激发他们对机制专业的探索和开拓激情,以及对科学执着的追求精神。
2.学习、研究方法指导
本课程是一门技术基础课,其最显著的特点是基础理论与工程实际的结合。要用到物理、数学、力学、机械制图和工程材料及机械制造基础等先修课程的知识,尤其是理论力学的知识。但并不是这些课程的简单重复,而是要引导学生如何应用所学的只是解决工程实际中所遇到的问题。所以本课程的学习不同于理论课程的学习,也不同于专业课,而具有一定的理论系统性及逻辑性和较强的工程实践性的特点。因此,在学习本课程时应注意掌握基本的概念、原理及机构的分析与综合的方法。
注重理论联系实际:本课程并不是研究某种具体的机械,而是着重研究一般机械的共性问题,即机构的结构分析和综合的基本理论和基本的方法。这些基本理论和方法是紧密为工程服务的。因此,在本课程的学习过程中,一方面要注意这些理论和方法在理论上建立和推演的严密性和逻辑性,另一方面更要注意这些理论和方法如何在工程实际中的应用。此外还应随时留意日常生活和生产中遇到的各种机械,以丰富自己的感性认识;并用所学到的理论和方法认识分析这些机械,以加深理解,使理论和实践相互促进。
初步建立工程观点:本课程要用到很多与工程有关的名词、符合、公式、标准及参数和对机械研究的一些常用的简化方法,如倒置、反转、转化、当量、等效、代换等等。在机构分析与综合中,除解析法外还介、实验法以及试凑等一些工程中实用的方法。因此在学习时,对名词应正确理解其含义,对公式应着重于应用,而对方法则着重掌握其基本原理和作法。另外,实际工程工程问题都是涉及多方面的因素的问题,其求解可采用多种方法,其解一般也不是唯一的。这就要求设计者具有分析、判断、决策的能力,要养成综合分析、全面考虑问题的习惯和科学严谨、一丝不苟的工作作风。
认真对待教学的每一个环节: 本课程全部教学工作的完成,需要自学、听课、习题课、实验课、课后作业、答疑和考试等教学环节。要学好这门课,希望大家对每个教学环节予以充分重视。

⑽ 机械原理课程设计 冷床运输机

能给我一份吗 谢谢 [email protected]

阅读全文

与机械原理教案设计模板相关的资料

热点内容
黑龙江特种设备检验研究院 浏览:210
机械化养护中心 浏览:838
上海特种设备管理 浏览:48
机械师改枪 浏览:181
机械化剪纸 浏览:757
美燃环保设备 浏览:809
济南北斗星数控设备有限公司 浏览:838
自动喷涂机械手 浏览:457
中小型农业机械加工项目建议书 浏览:251
不锈钢加工设备市转让 浏览:441
水稻生产全程机械化 浏览:110
扳手机械原理 浏览:61
凯格精密机械有限公司 浏览:61
广毅机电设备 浏览:805
重庆三阳办公设备有限公司 浏览:494
华技达自动化设备 浏览:631
东莞石碣自动化设备厂 浏览:131
机械制图陈列柜 浏览:246
郑州奥鑫游乐设备公司 浏览:733
美邦环保设备有限公司 浏览:386