導航:首頁 > 精密設計 > 機械設計手冊軸承端蓋畫法

機械設計手冊軸承端蓋畫法

發布時間:2021-06-12 23:38:38

1. 減速器軸承端蓋的設計

機械設計經驗豐富的人員會根據:空間位置,材料材質的選擇,軸向應力的判斷,設計一個合理的寬度。
對於沒有設計經驗的初學者,可以參考機械設計手冊,借鑒其中案例設計適合自己項目的尺寸。

2. 二級直齒圓柱齒輪減速器課程設計 有的借看看咯~~

僅供參考
一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級展開式圓柱齒輪減速器.運輸機連續單向運轉,載荷變化不大,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限8年(300天/年),兩班制工作,運輸容許速度誤差為5%,車間有三相交流,電壓380/220V
表一:
題號

參數 1 2 3 4 5
運輸帶工作拉力(kN) 2.5 2.3 2.1 1.9 1.8
運輸帶工作速度(m/s) 1.0 1.1 1.2 1.3 1.4
捲筒直徑(mm) 250 250 250 300 300

二. 設計要求
1.減速器裝配圖一張(A1)。
2.CAD繪制軸、齒輪零件圖各一張(A3)。
3.設計說明書一份。

三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 設計V帶和帶輪
6. 齒輪的設計
7. 滾動軸承和傳動軸的設計
8. 鍵聯接設計
9. 箱體結構設計
10. 潤滑密封設計
11. 聯軸器設計

1.傳動裝置總體設計方案:

1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:

圖一:(傳動裝置總體設計圖)

初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器(展開式)。
傳動裝置的總效率
=0.96× × ×0.97×0.96=0.759;
為V帶的效率, 為第一對軸承的效率,
為第二對軸承的效率, 為第三對軸承的效率,
為每對齒輪嚙合傳動的效率(齒輪為7級精度,油脂潤滑.
因是薄壁防護罩,採用開式效率計算)。

2.電動機的選擇

電動機所需工作功率為: P =P /η =1900×1.3/1000×0.759=3.25kW, 執行機構的曲柄轉速為n= =82.76r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×82.76=1324.16~13241.6r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。

方案 電動機型號 額定功率
P
kw 電動機轉速

電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動比 V帶傳動 減速器
1 Y112M-4 4 1500 1440 470 230 16.15 2.3 7.02

中心高
外型尺寸
L×(AC/2+AD)×HD 底腳安裝尺寸A×B 地腳螺栓孔直徑K 軸伸尺寸D×E 裝鍵部位尺寸F×GD
132 515× 345× 315 216 ×178 12 36× 80 10 ×41

3.確定傳動裝置的總傳動比和分配傳動比

(1) 總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/82.76=17.40
(2) 分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3,則減速器傳動比為 = =17.40/2.3=7.57
根據各原則,查圖得高速級傳動比為 =3.24,則 = =2.33

4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.33=82.93 r/min
= =82.93 r/min
(2) 各軸輸入功率
= × =3.25×0.96=3.12kW
= ×η2× =3.12×0.98×0.95=2.90kW
= ×η2× =2.97×0.98×0.95=2.70kW
= ×η2×η4=2.77×0.98×0.97=2.57kW
則各軸的輸出功率:
= ×0.98=3.06 kW
= ×0.98=2.84 kW
= ×0.98=2.65kW
= ×0.98=2.52 kW
(3) 各軸輸入轉矩
= × × N?m
電動機軸的輸出轉矩 =9550 =9550×3.25/1440=21.55 N?
所以: = × × =21.55×2.3×0.96=47.58 N?m
= × × × =47.58×3.24×0.98×0.95=143.53 N?m
= × × × =143.53×2.33×0.98×0.95=311.35N?m
= × × =311.35×0.95×0.97=286.91 N?m
輸出轉矩: = ×0.98=46.63 N?m
= ×0.98=140.66 N?m
= ×0.98=305.12N?m
= ×0.98=281.17 N?m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.25 21.55 1440
1軸 3.12 3.06 47.58 46.63 626.09
2軸 2.90 2.84 143.53 140.66 193.24
3軸 2.70 2.65 311.35 305.12 82.93
4軸 2.57 2.52 286.91 281.17 82.93

6.齒輪的設計

(一)高速級齒輪傳動的設計計算

1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1) 齒輪材料及熱處理
① 材料:高速級小齒輪選用 鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用 鋼正火,齒面硬度為大齒輪 240HBS Z =i×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。

2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計

確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26

②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
許用接觸應力

⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d

=
②計算圓周速度

③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式


⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN?m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774

⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78

⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =

大齒輪的數值大.選用.

⑵ 設計計算
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的

(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用 鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用 鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度

6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN?m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y

(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的

查課本由 圖10-20c得齒輪彎曲疲勞強度極限

查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較

大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度

圓整後取

低速級大齒輪如上圖:

V帶齒輪各設計參數附表

1.各傳動比
V帶 高速級齒輪 低速級齒輪
2.3 3.24 2.33

2. 各軸轉速n
(r/min)
(r/min) (r/min)
(r/min)
626.09 193.24 82.93 82.93

3. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)

3.12 2.90 2.70 2.57

4. 各軸輸入轉矩 T
(kN?m)
(kN?m) (kN?m) (kN?m)
47.58 143.53 311.35 286.91

5. 帶輪主要參數
小輪直徑 (mm) 大輪直徑 (mm)
中心距a(mm) 基準長度 (mm)
帶的根數z
90 224 471 1400 5

7.傳動軸承和傳動軸的設計

1. 傳動軸承的設計

⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.70KW =82.93r/min
=311.35N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F

F = F tan =4348.16×0.246734=1072.84N

圓周力F ,徑向力F 及軸向力F 的方向如圖示:

⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取

輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取

因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑

⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.

D B

軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C

2. 從動軸的設計

對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.

④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則

至此,已初步確定了軸的各端直徑和長度.

5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.

傳動軸總體設計結構圖:

(從動軸)

(中間軸)

(主動軸)

從動軸的載荷分析圖:

6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全

7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力

截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:


經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500

抗扭系數 =0.2 =0.2 =25000

截面Ⅳ左側的彎矩M為 M=133560

截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的

8.鍵的設計和計算

①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50

②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.

1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度

2. 考慮到機體內零件的潤滑,密封散熱。

因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為

3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.

4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.

D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.

減速器機體結構尺寸如下:

名稱 符號 計算公式 結果
箱座壁厚

10
箱蓋壁厚

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑

M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚

9 8.5

軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)125(2軸)
150(3軸)

10. 潤滑密封設計

對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。

密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。

11.聯軸器設計

1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm

3. 機械達人幫下忙:兩級斜齒圓柱齒輪減速器的課程設計

STU你好,整理的1000份機械課設畢設,你說的裡面有的,直接用就行V

4. 軸承端蓋設計時的m如何確定

端蓋的止口直徑等於軸承的外徑,內蓋軸空比軸承內徑大15,外蓋內徑比軸承內徑大15絲,止口高度大約用軸承室厚度減去軸承寬度的一半。
機械設計經驗豐富的人員會根據:空間位置,材料材質的選擇,軸向應力的判斷,設計一個合理的寬度。
對於沒有設計經驗的初學者,可以參考機械設計手冊,借鑒其中案例設計適合自己項目的尺寸。

5. 軸承用何種方式潤滑軸承端蓋的形式與結構與軸承的潤滑方式有何關系

用何種潤滑方式要看軸承用在啥地方
有脂潤滑,也有飛濺潤滑的

6. 雙級圓柱齒輪減速器中嵌入式軸承蓋與軸承之間的部分是什麼

應該是密封墊,不確認的話查下機械設計手冊把

7. 軸承端蓋的寬度怎麼確定

承端蓋,軸承端蓋用以固定軸承、調整軸承間隙並承受軸向力。 軸承端蓋的結構有嵌入式和凸緣式兩種。每種又有悶蓋和透蓋之分。 嵌入式軸承端蓋結構簡單、緊湊,無需固定螺釘,外徑小,重量輕,外伸軸尺寸短。但裝拆端蓋和調整 軸承間隙困難,密封性能差,座孔上開槽,加工費時。嵌入式軸承端蓋多用於重量輕、結構緊湊的場合。
軸承尺寸與軸承型號的關聯: 軸承一般有三個尺寸,即內徑尺寸、外徑尺寸、寬度尺寸反應到軸承型號當中。 以21307CDE4為例: CDE4:為後置代號。 21307:為軸承的基本代號。
反應的就是軸承的尺寸。 07:內徑代號。表示軸承的內徑尺寸=07×5=35mm 3:外徑代號。表示軸承的外徑尺寸是「3」系列。詳細尺寸參數需查詢手冊。 1:寬度代號。表示軸承的寬度是「1」系列。
詳細參數需查詢手冊。 2:類型結構代號。表示此軸承是雙列調心滾子軸承。 內徑尺寸與型號的關聯: 一、內徑尺寸<10mm的軸承,軸承的內徑尺寸即軸承的內徑代號。 例:608T1XZZMC3ER軸承的內徑尺寸=8mm。
二、內徑尺寸大於等於10mm、小於等於17mm的軸承: 內徑尺寸=10mm,軸承的內徑代號是:00 例:6200CM軸承的內徑尺寸=10mm 內徑尺寸=12mm,軸承的內徑代號是:01 例:6901-2Z的軸承內徑尺寸=12mm。
內徑尺寸=15mm,軸承的內徑代號是:02 例:6902-2Z的軸承內徑尺寸=15mm。 內徑尺寸=17mm,軸承的內徑代號是:03 例:6903-2Z的軸承內徑尺寸=17mm。
三、內徑尺寸大於等於20mm,小於等於180mm的軸承。 內徑尺寸=軸承的內徑代號×5 例:23084CAME4C3S11軸承的內徑尺寸=84×5=420mm 四、軸承型號中有斜杠(/)的。
斜杠右側的數字即軸承的內徑尺寸。 軸承內徑尺寸與型號關聯規則不符合上述三種規則的,全部用到斜杠。 例:619/1。5軸承內徑尺寸是1。5mm,不符合常規規則。 例:63/32CM軸承內徑尺寸是32mm,亦不符合常規規則。
例:230/530CA軸承的內徑尺寸是530mm,不符合規則。 帶斜杠的軸承型號一般出現在內徑尺寸大於480mm的軸承中;沖壓外圈和實體套圈滾針軸承中;各類非標軸承中;歐系代號小徑球軸承中(內徑尺寸<10mm),等。
英制軸承的內徑與軸承尺寸的關聯詳見ABMA標准。

8. 軸承端蓋設計在機械設計手冊哪一冊那一篇啊,求大神幫忙找一下~~T_T (端蓋的外形尺寸如何確定)

軸承端蓋用以固定軸承、調整軸承間隙並承受軸向力,可以參版考網路文庫資料:權http://wenku..com/link?url=XQt_NUPdoArfQE0xtNAo__puywUn6_Zr6QdSOLN_Y9TdAmyMMxiCDVAfWBq

供參考

9. 這是什麼,軸承蓋機械手冊上查的到么

這是凸緣聯軸器(半),均為成對使用,機械設計手冊中可以查到,但一些尺寸與你的圖中尺寸不同。

閱讀全文

與機械設計手冊軸承端蓋畫法相關的資料

熱點內容
黑龍江特種設備檢驗研究院 瀏覽:210
機械化養護中心 瀏覽:838
上海特種設備管理 瀏覽:48
機械師改槍 瀏覽:181
機械化剪紙 瀏覽:757
美燃環保設備 瀏覽:809
濟南北斗星數控設備有限公司 瀏覽:838
自動噴塗機械手 瀏覽:457
中小型農業機械加工項目建議書 瀏覽:251
不銹鋼加工設備市轉讓 瀏覽:441
水稻生產全程機械化 瀏覽:110
扳手機械原理 瀏覽:61
凱格精密機械有限公司 瀏覽:61
廣毅機電設備 瀏覽:805
重慶三陽辦公設備有限公司 瀏覽:494
華技達自動化設備 瀏覽:631
東莞石碣自動化設備廠 瀏覽:131
機械制圖陳列櫃 瀏覽:246
鄭州奧鑫游樂設備公司 瀏覽:733
美邦環保設備有限公司 瀏覽:386